
Chris Henrick
Thesis Studio One
Scott Pobiner, Louisa Campbell
4/19/2014

How can technology bridge the communication gap around the issues of
affordable housing and displacement between stakeholders that speak
separate languages such as elected city officials, grassroots organizers and
civic technologists?

What are the unmet needs of community groups that are working towards
promoting truly affordable housing and the prevention of displacement of
working class and low-income residents in New York City?

Having met with two local community groups in Brooklyn; The Northwest
Bushwick Community Group (NBCG) and Movement to Protect the People
(MTOPP), needs and communication gaps from both groups were identified.

The NBCG was established several years ago after the council woman serving
the Community Board that encompasses the Bushwick area informed residents of
planned up-zoning and a luxury condo development. Following a hearing on this
matter residents of Bushwick, Brooklyn formed the NBCG to advocate for the
retention of truly affordable housing and prevention of the displacement of
residents in Bushwick. Following the group's organization NBCG met with

Technical Module Design Brief

Design Questions

Research

The Northwest Bushwick Community Group

students from the Parsons Urban Ecologies program for a workshop on
development and displacement. This led to further organizing efforts including the
participatory mapping of vacant land, vacant buildings, new developments and
developments in progress within the Bushwick area, which the author took part in.

Following this workshop the group worked with a GIS analyst to establish an
online community map of Bushwick that displays data relating to housing and
development in the Bushwick area. Currently the map has limited functionality and
lacks clarity in what it attempts to communicate to an un-specified audience. A
need exists for this map to be re-designed to convey the organization's narrative
relating to development, gentrification and development in Bushwick to a specific
audience.

MTOPP was born earlier in 2014 after a local resident began organizing to
prevent the up-zoning of a commercial corridor along Empire Boulevard in the
neighborhood of Prospect Lefferts Gardens located just south of Crown Heights
and east of Prospect Park. After meeting with MTOPP the organization requested
the transaction histories of property along Empire Blvd to identify potential new
development trends. The author then stated he would assist MTOPP with
acquiring the transaction data.

Currently the author is working with both community groups on an on going basis.
For the purpose of this design brief only the work for MTOPP is being addressed
as the work for NBCG has not lead to a prototype as of yet.

The data requested by MTOPP is located online via a city website called ACRIS.
The method by which a user requests and acquires property transaction records
through ACRIS is convoluted and the data is not accessible in a format which can
be opened with spreadsheet software such as Microsoft Excel. The first part of
this module's prototype was to identify block and lot values for the 34 properties in
the study area along Empire Boulevard and then write a python script in order to

Movement to Protect the People

Project Concept

http://a836-acris.nyc.gov/CP/CoverPage/MainMenu

scrape their transaction history records. Each of these transaction history records
was then outputted to a CSV file and submitted to MTOPP.

Following the successful web scraping the author conceptualized a web-app to
make obtaining property transaction histories in bulk easier for a user. The goal of
such a tool would be to improve access to this information to community groups.
Thus such groups could empower themselves by being able to look up and
download all property transaction histories for their neighborhood. A functional
web-app has been started but has not been finished due to time restrictions and
programming obstacles.

The steps for web-scraping were as follows:

1. Meet with MTOPP to identify the organization's needs.
2. Use NYC's MapPluto data with a GIS to determine the Borough, Block and

Lot numbers for the requested properties along Empire Blvd between South
Crown Heights and Prospect Lefferets Garden in Brooklyn, NY.

3. Output the desired data from the GIS to a CSV file which can then be read by
a python script to automate the reading and extraction of Borough, Block and
Lot numbers.

4. Using Python, mimic a web browser and submit POST requests to the
ACRIS server for each property in the CSV file. Randomize a period of time
for the script to "sleep" between each POST request to mimic a typical
website user and to not overload the ACRIS servers.

5. Output the transaction records for each property to a CSV file.
6. Send the files to MTOPP.

The steps for the implementation of a web app were as follows:

1. Create a UI that allows a user to draw a polygon around a desired area on an
interactive map. This area will be used to perform an intersection on tax-lots
that provide Borough, Block and Lot numbers for retrieving building
transaction history from ACRIS data.

Methodology

2. Import the transaction history data from ACRIS via NYC Open Data into a
Postgres database on a web server that can be queried via a PostGIS.

3. Once the data is queried output it to a CSV format that can be downloaded
by the user.

Due to restraints in the author's knowledge of server side programming and the
allotted time in which this brief was to be prepared the web app was not finished.
However the next steps are identified as follows:

With help from BetaNYC determine how to import the ACRIS bulk data from the
NYC Open Data portal into a Postgres database on a web server. Then finish
coding the web app so that the data can be queried by a user through a map
interface and returned as downloadable CSV files.

Sample HTML table obtained from ACRIS through a POST request:

Findings and Next Steps

Appendix

Part 1: Web Scraping with Python

Screen shot from QGIS showing study area in Prospect Lefferts Gardens:

Sample of data outputted from Map-PLUTO using QGIS:

Final Python code used for ACRIS web scraping:

from sys import argv
import csv
import requests
import bs4
import time
import random

script, filename = argv

f = open(filename)

url = "http://a836-acris.nyc.gov/DS/DocumentSearch/BBLResult"
headers = {'User-Agent' : 'Mozilla/5.0'}

count = 0

with open(filename, 'rb') as f:
 reader = csv.reader(f)
 next(reader, None)

 try:
 for row in reader:
 print row
 # example url from arcis http://a836-acris.nyc.gov
/bblsearch/bblsearch.asp?borough=3&block=1306&lot=35
 block = row[1]
 lot = row[2]
 address = row[11]
 #print "the block is %s and the lot is %s" % (blo
ck, lot)
 url2post = "http://a836-acris.nyc.gov/bblsearch/bb
lsearch.asp?borough=3&block=%s&lot=%s" % (block,lot)
 print "the address is %s and the url is: %s" % (ad
dress, url2post)

 data = {
 'hid_borough':'3',
 'hid_borough_name':'BROOKLYN / KINGS',
 'hid_block':block,
 'hid_block_value': block,
 'hid_lot':lot,
 'hid_lot_value': lot,
 'hid_doctype_name':'All Document Classes',
 'hid_max_rows':'10',
 'hid_page':'1',
 'hid_SearchType':'BBL',
 'hid_ISIntranet':'N'
 }
 print data

 t = open(address + ".csv", 'w+')
 # write column headers
 t.write("Reel/Pg/File,CRFN, Lot, Partial, Doc Date
, Recorded / Filed, Document Type, Pages, Party1, Party2, Part
y3 / Other, More Party 1/2 Names, Corrected / Remarks, Doc Amo
unt\n")

 response = requests.post(url, headers=headers,data
=data)
 soup = bs4.BeautifulSoup(response.text)

 print response

 table = soup.find(attrs={"cellspacing":"1","width"
:"100%"})

 # iterate over table
 for row in table.find_all('tr')[1:]:

 for col in row.find_all('td')[1:]:
 # f = col.find_all('font')

 for f in col.find_all('font'):
 value = f.string
 print value

 try:
 # print value.strip()
 value = value.replace(',','')
 t.write(value.strip())
 t.write(',')

 except Exception:
 t.write('*,')
 pass
 count +=1
 if count !=0 and count % 14 == 0:
 t.write('\n')

 t.close()
 time.sleep(random.randrange(32,48))
 except csv.Error as e:
 sys.exit('file %s, line %d: %s' % (filename, reader.li
ne_num, e))

Sample web map UI:

Part II: Designing a Web App to Automate ACRIS data
retrieval:

Zooming in to inspect Block and Lots

Hovering the mouse over a tax-lot reveals it's Borough, Block, Lot, Address,
Owner Name, Number of Floors, Lot Area, Building Area and Year Built.

Using the Leaflet Draw plug-in to create a polygon that will select the desired tax-
lots.

Index.html

Code for app's front-end:

<html>
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome
=1">
 <meta name="description" content="">
 <meta name="author" content="">
 <title></title>
 <link rel="stylesheet" type="text/css" href="css/leaflet.c
ss">
 <link rel="stylesheet" type="text/css" href="css/styles.cs
s">
 <link rel="stylesheet" type="text/css" href="css/leaflet.d
raw.css">
 </head>
 <body>
 <header class="box">NYC Property Transaction Extractor</he
ader>
 <div id="map"></div>
 <div id="about" class="box">
 <p>This Map lets you inspect information about New York
City Tax Lots.</p>
 <p>Hover over the tax lots to view basic info about them
</p>
 <p>Use the drawing tools on the right to draw a rectangl
e and select Tax Lots</p>
 </div>
 <div class="box info1">
 <p>click to draw a rectangle ☞</p>
 </div>

 <script src="js/jquery-2.1.1.min.js"></script>
 <script src="js/underscore-min.js"></script>
 <script src="js/leaflet.js"></script>
 <script src="js/leaflet.draw.js"></script>
 <script src="js/leaflet.utfgrid.js"></script>
 <script type="text/javascript" src="http://maps.stamen.com
/js/tile.stamen.js?v1.2.3"></script>
 <script src="js/main.js"></script>

 </body>
</html>

main.js

var app = app || {};

app.map = (function (w, d) {

 var e = {
 map : null,
 lots : null,
 test : null,
 utfGrid : null
 };

 // render the map
 var initMap = function(){
 console.log('initMap called');
 var config = {
 baselayer : new L.StamenTileLayer("toner-lite"),
 initLatLng : new L.LatLng(40.7, -74),
 zoom : 12,
 minZoom : 12,
 maxZoom : 18,
 zoomControl : false,
 attributionControl : true,
 maxBounds : L.latLngBounds([40.539373,-74.117203],[4
0.771182,-73.798599])
 };

 e.map = L.map('map', config);
 e.map.addLayer(config.baselayer);
 e.map.setView(config.initLatLng, config.zoom);

 e.test = L.tileLayer('http://localhost:8888/v2/nyc_pluto
_test/{z}/{x}/{y}.png', {opacity: 0.5});
 e.map.addLayer(e.test);

 e.utfGrid = new L.UtfGrid('http://localhost:8888/v2/nyc_
pluto_test/{z}/{x}/{y}.grid.json?callback={cb}', {
 resolution: 4
 });

 e.utfGrid.on('mouseover', function(e){ info.update(e);})
.on('mouseout', function(e){ info.update();})

 var info = L.control();
 info.options.position = 'bottomright';
 info.onAdd = function (map) {
 this._div = L.DomUtil.create('div', 'info'); // crea
te a div with a class "info"
 this.update();
 return this._div;
 };

 info.update = function (props) {
 this._div.innerHTML = "<h4>Block Lot Info</h4>" + (pr
ops ?
 "<values>" + props.data.Block + "
Lot <rank>
" + props.data.Lot+"</rank></values>"
 : 'Hover over a tax lot');
 };

 // e.map.addLayer(e.utfGrid)
 // .addControl(info);

 new L.control.zoom({position: 'topright'}).addTo(e.map);

 var editableLayers = new L.FeatureGroup();

 var options = {
 position: 'topright',
 draw: {
 polyline: false,
 polygon: false,
 circle: false, // Turns off this drawing tool
 rectangle: {

 shapeOptions: {
 clickable: false
 }
 },
 marker: false
 },
 edit: {
 featureGroup: editableLayers, //REQUIRED!!
 remove: false
 }
 };

 var drawControl = new L.Control.Draw(options);

 e.map.addLayer(editableLayers);
 e.map.addControl(drawControl);
 e.map.on('draw:created', function (e) {
 var type = e.layerType,
 layer = e.layer;

 if (type === 'marker') {
 layer.bindPopup('A popup!');
 }

 editableLayers.addLayer(layer);
 });

 };

 // vector data overlay
 var fetchData = function() {
 // pop-up content
 var pc = function(feature) {
 return;
 };

 var style = {
 color: '#03f',
 weight: 3,
 opacity: 0.5,

 fill: '#fff',
 fillOpacity: '0.2'
 };

 $.getJSON('http://localhost:3000/amenities', function(d) {
 console.log('the data is: ', d);
 e.lots = L.geoJson(d, {
 style : style
 }).addTo(e.map);

 });
 };

 var init = function() {
 console.log('app.map init called');
 initMap();
 //fetchData();
 };

 return {
 init : init,
 elements : e
 };

})(window, document);

window.addEventListener('DOMContentLoaded', app.map.init);

